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Abstract: We report the experimental characterization and modeling of thermal lensing
in Cr*":ZnSe face-cooled laser disks using the phase shift interferometry technique. The
thermal lens powers of the 1-mm and 0.5-mm thick disks were strong (37 and 19 diopters
at 5 W pumping); the thermal lens power scaled with disk thickness and pump power;
and temperatures were reached in the disks at which nonradiative relaxation is
significant.

OCIS Codes: (140.5680) Rare earth and transition metal solid-state lasers; (140.3070) Infrared and far
infrared lasers

Introduction

Attempts to develop Cr*" lasers into usable sources have been hampered by the sensitivity of Cr*":1I-VI
materials to thermal distortion [1] and temperature-dependent nonradiative relaxation [2]. Unfortunately,
little published data exists on thermal effects in CIE+ doped materials, effectively making C¥" laser
design a lengthy, iterative process, as often the initial design does not work as intended. Recently, we
achieved 4.2 W of output in a face-cooled disk laser [3]. Thermal effects were reduced compared to
standard bulk configurations but not entirely eliminated. To aid in further power scaling of our disk
laser, we measured the thermal effects using a 2-pm interferometer with a phase-shifting technique, then
compared the results to modeling using commercial finite-element analysis software. This paper
presents the results of that characterization effort and implications for future laser resonator design.

Experiment Overview

The experimental setup, shown in Fig. 1, consisted of a Cr**:ZnSe disk laser gain head, a Tm:YLF pump
laser, a Tm,Ho: YLF probe laser, an interferometer, and a computer for capturing and post-processing the
data. The Cr":ZnSe gain head itself consisted of a C*:ZnSe laser disk on a water-cooled heat sink,
and the associated relay imaging optics used to obtain 16 passes of pump light through the Cr**:ZnSe
disk. Two disks were used in this experiment, a 0.5-mm thick disk, and a 1.0-mm thick disk, both AR
coated on the input face and HR coated on the back face (which was attached to the heat sink). The
Tm:YLF pump laser produced up to 15 W CW at 1.88 pm, with an M* of 5. The multi-pass pumping
produced a pumped spot with absorbed power distribution fairly well approximated by a fourth order
“super-Gaussian” with 0.4-mm radius. The Tm,Ho:YLF probe laser was of similar design as the
Tm:YLF pump laser, but was run with low diode laser input power, resulting in a fairly stable 200-mW
output beam at 2.05 um. This laser was used because the probe needed to be at a wavelength for which
the crystals were already coated, and thus more convenient l-uum or 633-nm lasers could not be used.
We used Tm,Ho:YLF instead of Tm:YLF to shift the probe laser wavelength away from the Cr**:ZnSe
absorption peak of 1.75 um. The probe laser beam was sent through a 1:1 telescope and spatial filter to
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clean up the transverse intensity profile of the beam, then run into a Twyman-Green interferometer,
configured as shown in Fig. 1. An imaging lens captured the interference pattern and projected it with
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Fig. 1. Cr*":ZnSe Thermal Characterization Experiment Schematic.

4x magnification onto a PV-320 thermal camera. A computer recorded the camera images for further
post-processing. By changing the piezo-electric actuator voltage, phase-shifted interference patterns
were recorded. The patterns were then post-processed to obtain plots of phase front curvature using
standard phase unwrapping techniques [4]. The phase curvature data were then fit to a parabolic surface
via least squares analysis to obtain the thermal lens power.

Results

The results of this experiment are shown in Fig. 2. The measured nonlasing thermal lens power in both
Cr*":ZnSe laser disks is plotted as a function of Tm:YLF pump power. The results are presented as if
the Cr*":ZnSe disks were curved mirrors with lens power (1/f) dependent on Tm:YLF pump power. The
basic findings are that the thermal lens powers of the 1-mm and 0.5-mm thick disks are strong (37 and
19 diopters, respectively, at 5 W of pump power), the thermal lens power scales with disk thickness and
pump power, and fairly high temperatures are reached in the disks.

The thermal lens powers measured in this experiment were initially surprising, as the disk laser
concept is supposed to significantly reduce thermal lensing [5]. The experiment showed strong thermal
lensing, up to 7 diopters per watt of absorbed pump power for the 1.0-mm disk, and half that for the 0.5-
mm disk. The thermal lensing was linearly dependent on pump power, as would be expected.
Subsequent thermal modeling showed that since the pump beam radius was not larger than the disk
thickness, and since the radial distribution of absorbed pump power in the disks was closer to a Gaussian
shape than a “top-hat” shape, our disks did not receive the full reduction of transverse thermal gradients
that is the hallmark of the “ideal” thin disk laser design. Transverse thermal gradients did exist,
following the absorbed intensity profile, and thus thermal lensing was still significant. One would need
to pump at least a 2-mm diameter area on the disk, with a higher order super-Gaussian pump beam to
obtain significant reduction of transverse temperature gradients in the disks.
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Going to a thinner disk does reduce overall thermal lensing, however, regardless of what the
transverse thermal gradients are.  Fig. 2 shows this experimentally, with the lens power of the 0.5-mm
disk being half that of the 1.0-mm disk. Modeling has indicated that thermal lens power is proportional
to disk thickness because the longitudinally averaged temperature distribution in a laser disk is nearly
independent of the disk thickness, as long as the total absorbed pump power stays constant and heat loss
from the disk edges is negligible. Given that the optical path length scales with disk thickness, but
temperature and dn/dT are not affected, thermal lens power thus scales directly with disk thickness.
Unfortunately, if one wants to further reduce thermal lensing in Cr*':ZnSe disks by reducing their
thickness below 0.5 mm, there is a problem: the 0.5-mm disk was not capable of absorbing much more
than 9-10 W in a 0.4-mm radius spot before all the Cr** absorption was bleached. Going to thinner disks

will require more heavily doped crystals, which so far have not been available due to unacceptable
losses and high nonradiative relaxation [2].
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Fig. 2. Cr*":ZnSe disk thermal lensing using 0.4-mm radius pump; 7.0 diopters/watt in 1.0-mm disk, 3.3 diopters/watt in
0.5-mm disk. '

Our modeling has shown that overheating as well as thermal lensing must be considered, even in
a face-cooled disk laser. Cr*" materials exhibit strong nonradiative relaxation which can significantly
reduce the laser gain at temperatures greater than about 50°C [2]. Using the value of dn/dT for ZnSe
(70x10° K™) [6] and a plot of phase curvature from the interferometry experiment (not shown), we
estimated the longitudinally-averaged temperature of the disk under pumped conditions as a function of
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radial position on the disk. The phase difference between the cold edge of the laser disk and the hot
center of the pumped spot was measured to be about 20 radians in the 1-mm sample under 5-W
pumping. This represents an average temperature along the axis of the pumped region 47 °C hotter than
the outside edge. As the heat sink was at 20 °C, the average temperature along the axis of the disk
would be 67 °C (estimated temperature going from 20 °C at the heat sink to 94 °C at the uncooled input
face). This is hot enough for the Cr*":ZnSe nonradiative relaxation rate to become significant. However,

simply cooling down the disk heat sink below room temperature will reduce the impact of nonradiative
relaxation. -

Summary

Both severe thermal lensing and disk overheating were discovered in our interferometric
characterization of the Cr*":ZnSe disks pumped by a 0.4-mm radius mult-mode Tm:YLF laser beam.
Thermal lensing as strong as 7 diopters per watt of pump power was measured in the 1-mm disk, and
longitudinally averaged temperature rises of ~10 °C per watt of pump power were observed at the
hottest spot on both disks. Both experimental and modeling results indicate that thermal lensing is
proportional to disk thickness and absorbed pump power; but disk temperature is proportional primarily
to absorbed pump power and cannot be reduced by using thinner disks. A non-uniform transverse pump
intensity distribution will also contribute to thermal lensing. Thus, minimizing thermal lensing effects in
Cr*" disk lasers requires the thinnest disk possible, the largest diameter pump beam feasible, and
uniform absorbed pump power distribution. However, these steps can reduce laser efficiency so
judicious compromises are necessary for optimum performance. Disk heating to the point of increased
nonradiative relaxation was also present but can be reduced by reducing the heat sink temperature.
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